Secondary Curriculum Maps

Cumberland Valley School District Soaring to Greatness, Committed to Excellence
$7^{\text {th }}$ Grade
Math (Pre-Algebra)

CVSD Math Curriculum Map $\sim 7^{\text {th }}$ Grade

PA Core Standard

CC.2.4.7.B.1 Draw inferences about populations based on random sampling concepts.

Taught in Unit(s)

Unit 5 (Statistics and Probability)

Explanation/Example of Standard

Use random samples.

Common Misconceptions

1. Students often expect the theoretical and experimental probabilities of the same data to match.
2. Students often expect that simulations will result in all of the possibilities.
3. Students often believe that one random sample is representative of the entire population.

Big Idea(s)	Essential Question(s)
1. Numerical measures describe the center and spread of numerical data.	How does the collection, analysis, organization, and interpretation of data help us to answer real world questions?
2. The likelihood of an event occurring can be described numerically and used to make predictions.	What kind of questions can and cannot be answered from the data set and its display?
	How do we make predictions based on the outcomes of a probability experiment?

Assessments

See unit map for specific unit common assessments

Assessment Anchor	Eligible Content	
M07.D-S. 1 Use random sampling to draw inferences about a population.	$\begin{aligned} & \text { M07.D- } \\ & \text { S.1.1.1 } \end{aligned}$	Determine whether a sample is a random sample given a real-world situation.
	$\begin{aligned} & \text { M07.D- } \\ & \text { S.1.1.2 } \end{aligned}$	Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Example 1: Estimate the mean word length in a book by randomly sampling words from the book. Example 2: Predict the winner of a school election based on randomly sampled survey data.
	Click here to enter text.	Click here to enter text.
	Click here to enter text.	Click here to enter text.
	Click here to enter text.	Click here to enter text.
Concepts (what students need to know)		Skills (what students must be able to do)
Data, Distributions, and Random Sampling		Draw inferences about two populations based on random sampling concepts.

	Draw informal comparative inferences about two populations using measures of center and measures of variability.

PA Core Standard

CC.2.4.7.B.3 Investigate chance processes and develop, use, and evaluate probability models. Taught in Unit(s)
Unit 5 (Statistics and Probability)

Explanation/Example of Standard

Predict or determine the likelihood of outcomes.
Use probability to predict outcomes.

Common Misconceptions

1. Students often expect the theoretical and experimental probabilities of the same data to match.
2. Students often expect that simulations will result in all of the possibilities.
3. Students often believe that one random sample is representative of the entire population.

Big Idea(s)	Essential Question(s)
The likelihood of an event occurring can be described numerically and used to make predictions.	How does the collection, analysis, organization, and interpretation of data help us to answer real world questions?
	What kind of questions can and cannot be answered from the data set and its display?
	How do we make predictions based on the outcomes of a probability experiment?

See unit map for specific unit common assessments

Assessment Anchor	Eligible Content	
M07.D-S. 3 Investigate chance processes and develop, use, and evaluate probability models.	$\begin{gathered} \text { M07.D- } \\ \text { S.3.1.1 } \end{gathered}$	Predict or determine whether some outcomes are certain, more likely, less likely, equally likely, or impossible (i.e., a probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event).
	$\begin{gathered} \text { M07.D- } \\ \text { S.3.2.1 } \end{gathered}$	Determine the probability of a chance event given relative frequency. Predict the approximate relative frequency given the probability. Example: When rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times but probably not exactly 200 times.
	$\begin{gathered} \text { M07.D- } \\ \text { S.3.2.2 } \end{gathered}$	Find the probability of a simple event, including the probability of a simple event not occurring. Example: What is the probability of not rolling a 1 on a number cube?
	M07.D-	Find probabilities of independent compound events

	S.3.2.3	using organized lists, tables, tree diagrams, and simulation.
	Click here to enter text.	Click here to enter text.
Concepts (what students need to know)		Skills (what students must be able to do)
	Draw inferences about two populations based on random sampling concepts. Determine and approximate relative frequencies and probabilities of events. Draw informal comparative inferences about two populations using measures of center and measures of variability.	
Find probabilities of independent compound		
events.		
Predict the approximate relative frequency		
given the probability.		

CVSD Math Curriculum Map ~ $7^{\text {th }}$ Grade

PA Core Standard

CC.2.4.7.B. 2 Draw informal comparative inferences about two populations.

Taught in Unit(s)

Unit 5 (Statistics and Probability)

Explanation/Example of Standard

Use statistical measures to compare two numerical data distributions.

Common Misconceptions

. Students often expect the theoretical and experimental probabilities of the same data to match.
2. Students often expect that simulations will result in all of the possibilities.
3. Students often believe that one random sample is representative of the entire population.

Big Idea(s)	Essential Question(s)
1. Numerical measures describe the center and spread of numerical data.	How does the collection, analysis, organization, and interpretation of data help us to answer real world questions?
2. The likelihood of an event occurring can be described numerically and used to make predictions.	What kind of questions can and cannot be answered from the data set and its display?
	How do we make predictions based on the outcomes of a probability experiment?

Assessments

See unit map for specific unit common assessments

Assessment Anchor	Eligible Content	
M07.D-S. 2 Draw comparative inferences about populations.	$\begin{gathered} \text { M07.D- } \\ \text { S.2.1.1 } \end{gathered}$	Compare two numerical data distributions using measures of center and variability. Example 1: The mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team. This difference is equal to approximately twice the variability (mean absolute deviation) on either team. On a line plot, not the difference between the two distributions of heights. Example 2: Decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth grade science book.
	Click here to enter text.	Click here to enter text.
	Click here to enter text.	Click here to enter text.
	Click here to enter text.	Click here to enter text.
	Click here to	Click here to enter text.

	enter text.
Concepts (what students need to know)	Skills (what students must be able to do)
Data, Distributions, and Random Sampling	Draw inferences about two populations based on random sampling concepts. Determine and approximate relative frequencies and probabilities of events.
	Draw informal comparative inferences about two populations using measures of center and measures of variability.
Find probabilities of independent compound	
events.	
Predict the approximate relative frequency	
given the probability.	
Find the probability of a simple event, including	
the probability of a simple event not occurring.	

CVSD Math Curriculum Map ~ $7^{\text {th }}$ Grade

PA Core Standard

CC.2.3.8.A.1 Apply the concepts of volume of cylinders, cones, and spheres to solve real-world and mathematical problems.

Taught in Unit(s)

Unit 6

Explanation/Example of Standard

Apply volume formulas of cones, cylinders, and spheres.

Common Misconceptions

1. Some students will mix up x - and y-axes on the coordinate plane, or mix up the ordered pairs.
2. A common misconception among middle grade students is that "volume" is a "number" that results from "substituting" other numbers into a formula.
3. Students see a constant rate of change as occurring only when distance between points on a table or graph is kept constant.

Big Idea(s)	Essential Question(s)
1. Numbers, measures, expressions, equations, and inequalities can represent mathematical situations and structures in many equivalent forms.	How and when can the Pythagorean Theorem help us to calculate the length of a segment without directly measuring it?
2. The set of real numbers has infinite subsets including the sets of whole numbers, integers, rational, and irrational numbers. 3. Patterns exhibit relationships that can be extended, described, and generalized.	Within polygons and polyhedra, how can we use angle relationships to solve mathematical problems?
How do we recognize when it is appropriate to use a linear model to represent a real world situation, and what are the benefits of using a linear model to answer questions about the situation? How can you choose a scale for your graphs so that the graph best represents a situation? How can we choose a scale so that the chosen scale	
distorts the data or misleads the reader?	

Concepts (what students need to know)	Skills (what students must be able to do)
Cylinders, Cones, and Spheres	Define, interpret, and compare functions displayed algebraically, graphically, numerically in tables, or by verbal descriptions.

PA Core Standard

CC.2.3.8.A. 2 Understand and apply congruence, similarity, and geometric transformations using various tools.

Taught in Unit(s)

Unit 6

Explanation/Example of Standard

Apply properties of geometric transformations to verify congruence or similarity.

Common Misconceptions

1. Pi is exactly 3.14 .
2. Many students are confused when dealing with circumference (linear measurement) and area.

Big Idea(s)			Essential Question(s)
Numbers, measures, expressions, equations, and inequalities can represent mathematical situations and structures in many equivalent forms. The set of real numbers has infinite subsets including the sets of whole numbers, integers, rational, and irrational numbers. Patterns exhibit relationships that can be extended, described, and generalized.			How and when can the Pythagorean Theorem help us to calculate the length of a segment without directly measuring it? Within polygons and polyhedra, how can we use angle relationships to solve mathematical problems? How do we recognize when it is appropriate to use a linear model to represent a real world situation, and what are the benefits of using a linear model to answer questions about the situation? How can you choose a scale for your graphs so that the graph best represents a situation? How can we choose a scale so that the chosen scale distorts the data or misleads the reader?
Assessments			
See unit map for specific unit common assessments			
Assessment Anchor			Eligible Content
M08.C-G. 1 Demonstrate an understanding of geometric transformations.	M08.C-G.1.1.1		tify and apply properties of rotations, reflections, and slations. Example: Angle measures are preserved in tions, reflections, and translations.
	M08.C-G.1.1.2		n two congruent figures, describe a sequence of sformations that exhibits the congruence between .
	M08.C-G.1.13		cribe the effect of dilations, translations, rotations, reflections on two-dimensional figures using dinates.
	M08.C-G.1.1.4		n two similar two-dimensional figures, describe a uence of transformations that exhibits the similarity veen them.

Concepts (what students need to know)	Skills (what students must be able to do)
Cylinders, Cones, and Spheres	Use transformations to demonstrate congruence and similarity of geometric figures.
Use various tools to understand and apply geometric transformations to geometric figures.	

CVSD Math Curriculum Map ~ $7^{\text {th }}$ Grade

PA Core Standard

CC.2.3.7.A. 1 Solve real-world and mathematical problems involving angle measure, area, surface area, circumference, and volume.

Taught in Unit(s)

Unit 5

Explanation/Example of Standard

Identify, use, and describe properties of angles and their measures.
Determine circumference, area, surface area, and volume.

Common Misconceptions

1. Pi is exactly 3.14 .
2. Many students are confused when dealing with circumference (linear measurement) and area.

Big Idea(s)			Essential Question(s)
1. Some questions can be answered by collecting, representing, and analyzing data, and the question to be answered determines the data to be collected, how best to collect it, and how best to represent it. 2. Similarity relationships between objects are a form of proportional relationships. Congruence describes a special similarity relationship between objects and is a form of equivalence.			How can the decomposition of 3-dimensional shapes aid in the understanding of surface areas and volumes? How can we use the relationship between surface area and volume to help us draw, construct, model, and represent real situations and/or solve problems of surface area and volume? How can we use proportionality represented through models of and models for ratio tables, factor-of-change (scale factor), a unit rate, and cross-multiplication to solve real world problems?
Assessments			
See unit map for specific unit common assessments			
Assessment Anchor			Eligible Content
M07.C-G. 2 Solve real-world and mathematical problems involving angle measure, circumference, area, surface area, and volume.	M07.C-G.2.1.1		and use properties of supplementary, mentary, and adjacent angles in a multistep to write and solve simple equations for an n angle in a figure.
	M07.C-G.2.1.2		and use properties of angles formed when two lines are cut by a transversal (e.g., angles may alternate interior, alternate exterior, vertical, onding).
	M07.C-G.2.2.1		area and circumference of a circle. Solve s involving area and circumference of a circle(s). as will be provided.
	M07.C-G.2.2.2		eal-world and mathematical problems involving lume, and surface area of two and threeional objects composed of triangles, aterals, polygons, cubes, and right prisms. as will be provided.

$\begin{array}{c}\text { Concepts } \\ \text { (what students need to know) }\end{array}$	Skills (what students must be able to do)
Area, Volume, Angles, and Circumference	$\begin{array}{l}\text { Use properties of angle types and properties of } \\ \text { angles formed when two parallel lines are cut by a } \\ \text { transversal line to solve problems. }\end{array}$
Solve problems involving area and circumference of	
a circle(s).	
Solve mathematical problems involving area, volume	
and surface area of two- and three-dimensional	
objects.	

PA Core Standard

CC.2.3.7.A. 2 Visualize and represent geometric figures and describe the relationships between them.
Taught in Unit(s) Taught in Unit(s)
Unit 6

Explanation/Example of Standard

Describe and apply properties of geometric figures.

Common Misconceptions

1. Pi is exactly 3.14 .
2. Many students are confused when dealing with circumference (linear measurement) and area.

| Big Idea(s) | Essential Question(s) |
| :--- | :--- | :--- |
| $\begin{array}{l}\text { 1. Some questions can be answered by collecting, } \\ \text { representing, and analyzing data, and the question to } \\ \text { be answered determines the data to be collected, } \\ \text { how best to collect it, and how best to represent it. }\end{array}$ | $\begin{array}{l}\text { How can the decomposition of 3-dimensional } \\ \text { shapes aid in the understanding of surface areas } \\ \text { and volumes? How can we use the relationship } \\ \text { between surface area and volume to help us draw, } \\ \text { construct, model, and represent real situations } \\ \text { and/or solve problems of surface area and volume? } \\ \text { 2. Similarity relationships between objects are a } \\ \text { form of proportional relationships. Congruence } \\ \text { describes a special similarity relationship between use proportionality represented } \\ \text { objects and is a form of equivalence. }\end{array}$ |
| through models of and models for ratio tables, | |
| factor-of-change (scale factor), a unit rate, and | |
| cross-multiplication to solve real world problems? | |$\}$

$\begin{array}{c}\text { Concepts } \\ \text { (what students need to know) }\end{array}$	Skills (what students must be able to do)
Geometric Figures	$\begin{array}{l}\text { Solve problems involving scale drawings of } \\ \text { geometric figures. }\end{array}$
Apply the properties of all types of triangles based	
on angle and side measure including the triangle	
inequality theorem.	

from slicing three-dimensional figures.\end{array}\right\}\)

CVSD Math Curriculum Map ~ $7^{\text {th }}$ Grade

PA Core Standard

CC.2.2.7.B.3 Model and solve real-world and mathematical problems by using and connecting numerical, algebraic, and/or graphical representations.

Taught in Unit(s)

Unit 2 (Rational Numbers), Unit 3 (Expressions and Equations)

Explanation/Example of Standard

Solve multi-step real-world and mathematical problems posed with positive and negative rational numbers.
Use variables to represent quantities in a real-world or mathematical problem and construct simple equations and inequalities to solve problems.
Determine the reasonableness of the answer(s) in problem solving situations.

Common Misconceptions

1. Confusion between how to identify rational and irrational numbers. The confusion seems to lie in their understanding of repeating vs. non-repeating decimals.
2. As students begin to build and work with expressions containing more than two operations, students tend to set aside the order of operations. For example having a student simplify an expression like $8+4(2 x-5)+3 x$ can bring to light several misconceptions. Students do not associate the distributive property with multiplication in the order of operations. In this case adding the 8 and the 4 prior to distribution.
3. Expressions with operation symbols are seen as "unfinished".
4. When combining like expressions students tend to "leave behind" negative signs with numbers and variable expressions.

Big Idea(s)

Two variable quantities are proportional if their values are in a constant ratio. The relationship between proportional quantities can be represented as a linear function.

Relations and functions are mathematical relationships that can be represented and analyzed using words, tables, graphs, and equations.

Similarity relationships between objects are a form of proportional relationships. Congruence describes a special similarity relationship between objects and is a form of equivalence.

Essential Question(s)

How can we use proportionality represented through models of and models for ratio tables, factor-ofchange (scale factor), a unit rate, and crossmultiplication to solve real world problems?

What are the connections among the different representations of a linear relationship?

How does the representation support the linear relationship? (ie. Where in each representation can you find the rate of change, the y-intercept, etc.?)

How can the decomposition of 3-dimensional shapes aid in the understanding of surface areas and volumes?

| | |
| :--- | :--- | :--- |

PA Core Standard

CC.2.1.7.D. 1 Analyze proportional relationships and use them to model and solve real-world and mathematical problems.

Taught in Unit(s)

Unit 4

Explanation/Example of Standard

Analyze, recognize, and represent proportional relationships and use them to solve real-world and mathematical problems.

Common Misconceptions

1. Fractions and ratios may represent different comparisons.
2. Ratios can be added like fractions
3. Students struggle with the freedom afforded to them when working with and comparing ratios

Big Idea(s)	
1. Numbers, measures, expressions, equations, and inequalities can represent mathematical situations and structures in many equivalent forms.	Had
2. Some questions can be answered by collecting,	
representing, and analyzing data, and the question to	
be answered determines the data to be collected,	
how best to collect it, and how best to represent it.	

How is computation with rational numbers similar and different to whole number computation?

How can we use proportionality represented through models of and models for ratio tables, factor-of -change(scale factor), a unit rate, and crossmultiplication to solve real world problems?

What are the connections among the different representations of a linear relationship?

How does the representation support the linear relationship? (ie. Where in each representation can you find the rate of change, the y-intercept, etc?)

How can the decomposition of 3-dimensional shapes aid in the understanding of surface areas and volumes?

How can we use the relationship between surface area and volume to help us draw, construct, model, and represent real situations and /or solve problems of surface area and volume?

Assessments

See unit map for specific unit common assessments

Assessment Anchor	Eligible Content	
M07.A-R. 1 Demonstrate an understanding of proportional relationships.	M07.A-R.1.1.1	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas, and other quantities measured in like or different units. Example: If a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction $1 / 2$ / $1 / 4$ miles per hour, equivalently 2 miles per hour.
	M07.A-R.1.1.2	Determine whether two quantities are proportionally related (e.g., by testing for equivalent ratios in a table, graphing on a coordinate plane and observing whether the graph is a straight line through the origin).
	M07.A-R.1.1.3	Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
	M07.A-R.1.1.4	Represent proportional relationships by equations. Example: If total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $\mathrm{t}=\mathrm{pn}$.
	M07.A-R.1.1.5	Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$, where r is the unit rate.
	M07.A-R.1.1.6	Use proportional relationships to solve multi-step ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease.
Concepts (what students need to know)		Skills (what students must be able to do)
Ratios, Proportions, and Percent		Compute unit rates associated with ratios of fractions. Recognize and represent proportional relationships between quantities. Use proportional relationships to solve multistep ratio and percent problems.

