Secondary Curriculum Maps

Cumberland Valley School District Soaring to Greatness, Committed to Excellence

Calculus

CV Priority Standard/PA Academic Standard

CC.2.2.HS.C.1 Use the concept and notation of functions to interpret and apply them in terms of their content

Taught in Unit(s)

Derivatives, Integration

Explanation/Example of Standard

- Determine the derivative of a function using appropriate derivative rules.
- Evaluate the derivative of a point to interpret an instantaneous rate of change.
- Determine the antiderivative of a function.

Common Misconceptions

- Students will confuse the derivative function with a derivative's value at a specific point.
- Students will fail to recognize the need for the product or quotient rule.
- Students will confuse the power rules for derivatives and integrals.

Big Idea(s)

- Mathematical relationships among numbers can be represented, compared, and communicated.
- Mathematical relationships can be represented as expressions and equations in mathematical situations.
- Patterns exhibit relationships that can be extended, described, and generalized.
- Mathematical relations and functions can be modeled through multiple representations and analyzed to raise and answer questions.

Essential Question(s)

- How is mathematics used to quantify, compare, represent, and model numbers?
- How can mathematics support effective communication?
- How can expressions and equations be used to quantify, solve, model, and/or analyze mathematical situations?
- How are relationships represented mathematically?
- How can recognizing repetition or regularity assist in solving problems more efficiently?
- How can patterns be used to describe relationships in mathematical situations?

Assessments

See file for specific unit common assessments.

Concepts

(what students need to know)

- Average Rate of Change
- Instantaneous Rate of Change
- Limit Definition of Derivative
- Slope of a Tangent Line
- Equation of a Tangent Line
- Derivative Rules (Constant Rule, Constant Multiple Rule, Chain Rule, Product Rule, Quotient Rule)
- Implicit Differentiation
- Derivatives of Exponentials
- Derivatives of Logarithms

Skills

(what students must be able to do)

- Determine the difference between average rate of change and instantaneous rate of change
- Use the limit definition of derivative to determine a derivative function
- Identify the slope of a tangent line
- Write the equation of a tangent line
- Determine the derivative of a function using an appropriate rule
- Determine the integral of a function using an appropriate rule

 Trigonometric Derivatives 	 Find the particular solution to an anti-
 Logarithmic Differentiation 	derivative given an initial condition
Anti-derivative	
Integral Rules	
Particular Solutions	

CV Priority Standard/PA Academic Standard CC.2.2.HS.C.2 Graph and analyze functions and their properties to make connections between the different representations Taught in Unit(s) **Derivative Applications Explanation/Example of Standard** • Identify intercepts, asymptotes, relative extrema, inflection points. • Describe increasing/decreasing behavior and concavity. • Sketch a graph using its properties. **Common Misconceptions** Students will reverse coordinates of x and y intercepts. • Students will fail to test for extrema and inflection points. • Students will attempt to sketch conflicting information. Big Idea(s) Essential Question(s) How can mathematics support effective Mathematical relationships can be represented as expressions and equations in communication? mathematical situations. How can expressions and equations be used to quantify, solve, model, and/or analyze Patterns exhibit relationships that can be mathematical situations? extended, described, and generalized. How are relationships represented Mathematical relations and functions can be mathematically? modeled through multiple representations and analyzed to raise and answer questions. How can recognizing repetition or regularity assist in solving problems more efficiently? How can patterns be used to describe relationships in mathematical situations? **Assessments** See file for specific unit common assessments. Concepts **Skills** (what students need to know) (what students must be able to do) Intercepts Determine intercepts algebraically • Apply rules for finding horizontal Vertical and Horizontal Asymptotes Increasing/Decreasing Behavior asymptotes • Relative Extrema • Factor rational expressions to determine vertical asymptotes Concavity Find first derivative of a function to identify Points of Inflection critical numbers Critical Numbers Perform first derivative test to find First Derivative Test increasing/decreasing intervals and relative extrema Use second derivative of function and a sign

test to determine concavity and points of

inflection

CV Priority Standard/PA Academic Standard

CC.2.2.HS.C.6 Interpret functions in terms of the situations they model

Taught in Unit(s)

Derivatives, Derivative Applications, Integration

Explanation/Example of Standard

- Apply rates of change to business and physics applications.
- Analyze how two related quantities change with respect to each other.
- Determine an optimal solution that satisfies given conditions.
- Use the summation properties of an integral to determine function models given their derivative formula.

Common Misconceptions

Students will confuse the marginals with the function values.

Students will fail to take the derivative with respect to time with related rates.

Students will interchange the conditions with the target function.

Students will fail to test solutions to verify the optimal situation.

Essential Question(s)
How is mathematics used to quantify, compare, epresent, and model numbers?
How can mathematics support effective communication? How can expressions and equations be used to quantify, solve, model, and/or analyze
nathematical situations? How are relationships represented
nathematically? How can recognizing repetition or regularity assist in solving problems more efficiently?
How can patterns be used to describe elationships in mathematical situations?

Assessments				
See file for specific unit common assessments.				
Concepts (what students need to know)	Skills (what students must be able to do)			
 Marginal Revenue Marginal Cost Marginal Profit Projectile Motion Related Rates Optimization 	 Use derivatives to find marginal revenue, marginal cost, or marginal profit formulas and specific values. Describe the motion of a projectile using acceleration, velocity, and position. Determine a rule to illustrate the relationships between changing quantities. Determine and verify an optimal solution that satisfies given conditions. Given a derivative formula, use the summation properties of integration to 			

determine a function model.
 Apply the models found through integration
or derivation to make predictions or describe
real-world situations.

OV.P			
	PA Academic Standard		
CC.2.2.HS.D.2 Write expressions in equivalent forms to solve problems			
Tought i	n Unit(a)		
Limits	n Unit(s)		
Lilling			
Explanation/Example of Standard			
 Determine the limit of a function analytically u 			
 Use trigonometric identities to rewrite trigonometric expressions to evaluate limits 			
Common Misconceptions			
	they will cancel individual terms instead of entire		
factors.			
	ions, students will simplify without finding a common		
denominator.	(double)on		
 Students inappropriately apply trigonometric 	identities.		
Big Idea(s)	Essential Question(s)		
Mathematical relationships among numbers	How is mathematics used to quantify, compare,		
can be represented, compared, and	represent, and model numbers?		
communicated.	The same of the same and the		
Mathematical relationshins can be	 How are relationships represented mathematically? 		
 Mathematical relationships can be represented as expressions and equations in 	mathematically:		
mathematical situations.	How can patterns be used to describe		
	relationships in mathematical situations?		
 Patterns exhibit relationships that can be 			
extended, described, and generalized.			
 Mathematical relationships can be 			
represented and analyzed using words,			
tables, graphs, and equations.			
per rec	sments		
See file for specific unit common assessments. Concepts	Skills		
(what students need to know)	(what students must be able to do)		
Definition of a limit	Identify the conditions for a limit to exist		
 Direct substitution 	 Evaluate a limit using direct substitution 		
 Basic limit properties 	 Simplify rational expressions by factoring, 		
 Replacement Theorem 	rationalizing, or using trigonometric		
 Factor polynomial expressions 	identities ■ Evaluate a limit using the Replacement		
 Rationalize radical expressions 	Theorem		
• One-sided limits	Identify the conditions for continuity at a		
• Limits at infinity	point		
 Infinite limits (Unbounded functions) 	Evaluate a limit using L'Hopital's Rule after		
 Definition of continuity L'Hopital's Pule 	finding derivative of both the numerator and		
L'Hopital's RuleSqueeze Theorem	denominator of a rational expression		
Squeeze TheoremSpecial Trigonometric Limits			
Opecial ITIgonometric billing			

CV Priority Standard	/PA Academic Standard	
CC.2.3.HS.A.14 Apply geometric concepts to model an		
Taught	in Unit(s)	
Applications of Integration		
Explanation/Example of Standard		
Estimate area under a curve using Riemann Sums.		
 Determine areas bounded by curves. 		
 Determine volumes of solids of revolution. 		
Common Misconceptions	-	
 Students will confuse left-endpoint rectangles 		
 Students will use incorrect function values wh 		
 Students will confuse disk and shell methods to 	when calculating volume.	
Big Idea(s)	Essential Question(s)	
 Patterns exhibit relationships that can be 	How can patterns be used to describe	
extended, described, and generalized.	relationships in mathematical situations?	
 Geometric relationships can be described, 	How can recognizing repetition or regularity	
analyzed, and classified based on spatial	assist in solving problems more efficiently?	
reasoning and/or visualization.		
	 How can the application of the attributes of 	
	geometric shapes support mathematical	
	reasoning and problem solving?	
	sments	
See file for specific unit common assessments.	Ol W	
Concepts	Skills (what students must be able to do)	
(what students need to know) • Riemann Sums	(what students must be able to do) • Evaluate a function at a point	
	 Calculate area approximations using 	
Trapezoidal Rule Definite Integral	rectangles and trapezoids	
Definite IntegralFundamental Theorem of Calculus	 Use the Fundamental Theorem of Calculus to 	
	evaluate definite integrals	
 Areas Bounded by Curves vs. Evaluating 	 Calculate areas bounded by curves using 	
an Integral	properties of definite integrals	
Disk Method Shall Mathod	 Calculate volumes of solids of revolutions 	
Shell Method	using disk and shell methods (extensions of	
	basic volume formulas of static solids)	

Grad	e:	garent o ha per figures en en garant a surveyana y a a per a menderan men en seguina en en en en en en en en e	લ્માં
Unit	Timeline	Topics	Priority Standards
		Limits	CC.2.2.HS.D.2 Write expressions in equivalent forms to solve problems
Limits	20 days	Continuity	
Limits	20 days		
		Derivative Rules	CC.2.2.HS.C.1 Use the concept and notation of functions to interpret and apply them in terms of their content
Derivatives	58 days		CC.2.2.HS.C.6 Interpret functions in terms of the situations they model
		Trigonometric Derivatives	
		Related Rates	CC.2.2.HS.C.2 Graph and analyze funtions and their properties to make connections between the different representations
Derivative	48 days	Curve Sketching	CC.2.2.HS.C.6 Interpret functions in terms of the situations they model
Applications		Optimization	
		Integration Rules	CC 2.2 HC C 4 Hz the concept and notation of functions to interpret and apply them in terms of their content
Turka mushi su	22 4	Advanced Integration	CC.2.2.HS.C.1 Use the concept and notation of functions to interpret and apply them in terms of their content CC.2.2.HS.C.6 Interpret functions in terms of the situations they model
Integration	23 days	Advanced integration	CC.2.2.HS.C.6 Interpret functions in terms of the situations they model
		i	
		Riemann Sums	CC.2.3.HS.A.14 Apply geometric concepts to model and solve real world problems
Applications		Area	OC.Z.S. 19.A. 14 Apply geometric concepts to moder and solve real world problems
of Integration		Volume	
or annual residence		Volume	
		<u> </u>	
Supplemental		Student Project	
Unit	15 days	Enrichment Topics	· · · · ·
		•	
		•	